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The statistics of a 3-mode representation of randomly forced 2-dimensional viscous 
flow are constructed by direct numerical integration of a coupled system of nonlinear 
ordinary differential equations. The statistics approach equilibrium when taken over a 
sufficiently large ensemble of realizations and agree well with analytic solutions for 
statistical equilibrium. 

1. INTR~DDcTI~N 

In a recent paper, Thompson (1971) has given an analytic treatment of the 
equilibrium statistics of a two-dimensional viscous flow with various simple 
types of random forcing. Expressed in terms of the stream function amplitudes Al, 
of a set of orthogonal functions, the evolution equations for nonlinear systems of 
this type are of the form 

olk2 9 + 5 F pijkaj2AiAi + vcxh4Arc = ah2fk(t)(k = 1, 2, 3... N) (1) 
i=l j=I 

where the ollc are discrete eigenvalues, v is the kinematic coefficient of viscosity, the 
f&t) are randomly varying forcing functions, and the nonlinear interaction coeffi- 
cients pijk have the following properties: Is,, vanishes if any two indices are the 
same, is invariant under cyclic permutation of indices, and reverses sign with 
noncyclic permutation. 

One special result was that, if the random forcing is statistically isotropic in an 
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N-dimensional phase space in which the coordinates are the AI,, there exists a 
unique stationary probability density function p, given by 

where 
p = Ce-vKIu, (2) 

and 

The positive constant D, depends solely on the geometry of the phase space, the 
crooked brackets denote the ensemble average and G(T) is the normalized auto- 
correlation function for the fk . The constant C is determined by the condition that 

c I, . . . jN p kc &I, = c ko j‘, e-("'2“) Q" dAk = I. 

As a direct consequence of Eq. (2), the stationary ensemble average of AD2 is 

(A,“) = j, ... j, pAg2 fi- dA, 

We shall refer to this simple formula later. 
In the paper cited above, it was shown only that a stationary probability distri- 

bution may exist and, if it does exist, is also unique. It is also easy to show that, if 
an equilibrium probability distribution exists, it is stable. That is, if the probability 
distribution is perturbed from equilibrium by some small amount, it tends to 
return to equilibrium. The analysis does not, however, answer the basic and 
remaining question: Do the ensemble statistics for a finite number of orthogonal 
modes become, in fact, independent of time, when averaged over many realizations ? 

Since this question cannot be resolved analytically (short of finding the general 
time-dependent solution for the nonequilibrium probability distribution), it 
appeared that a direct numerical test was in order. To gain some insight, we have 
considered the simplest nontrivial system represented by Eq. (l), viz., that for 
which N = 3. One might intuitively expect that the lowest order system would 
display the least “ergodicity” and would thus be least likely to approach a state 
of statistical equilibrium. In this respect, the calculation of statistics of the simplest 
system might be regarded as the most crucial test. 
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2. FORMULATION OF THE COMPUTING PROBLEM 

In the case when N = 3, Eq. (1) generates the system 

2 + B(4 - a22) dA 
dt al2 A,& + v~,~A, = fi , 

) PC%" - (1132) dA, 
dt a22 

AA + ~a,~A2 = fi , 

3 I rB(a22 - El"> dA 
dt 0132 

AA, + v~3~A3 =fs, 

(4) 

where p is a constant. It is readily verified that, if all thef’s are zero and Y = 0, 
then 

ak2Ak2 = 0 and f i ak4Ak2 = 0. 
k=l 

These invariants were used to check the program for numerical time integration of 
Eqs. (4). If thef’s are all zero and /3 = 0, the solutions of Eqs. (4) are just exponen- 
tial functions with known e-folding times. 

In order to avoid computing spurious unstable solutions, we have adopted 
simple one-step forward dilferencing in time. With a suitable choice of dimension- 
less variables and values of /3, a1 , 01~ , and CL~ appropriate to the lowest three modes 
for a rectangular domain whose aspect ratio is V/2, the finite difference equations 
corresponding to Eqs. (4) are 

x n+l = Xv, - 7(3-G + 3 Y,,Z, + I;,), 
Y n+l = Yn - 7&Y,, - 3X,.&z + G,), (5) 
z a+1 = zn - 7(9&I + -J&y, + K&h 

in which r = r2At, At is the time increment, and the subscript n denotes condi- 
tions at the n-th time level. The variables X, , Y, , Z,, , F,, , G, , and H,, are 
dimensionless forms of Al , A, , A, , fi , f2 and f3 , respectively. 

The randomly varying functions F, , G, and H, were generated by performing 
a two-decision “random walk” on the surface of a sphere with fixed radius A in the 
(F, , G, , H,) space. Specifically, 

Fara = AS,, , G3, = AC,m~,m, H3m = -4C3my3m 3 

F3mil = AC3m+l~3m+l, G3m+1 = AS3m+1, H 37n+1 = AC3m+lc73m+1> 

F3m+2 = AC3W2a3m,2 7 G3,,2 = AC3m+2Y3m+2, H3m+2 = -4S37w2, 
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for rn = 1, 2, 3 ,.... The C, , S,, , Us , and yn were generated from the formulas 

and 
S - cn*un*, ni-1 - 

C n+l = (I - q2qf2y2, 

0 
G”YTL* 

n+1 = ___ 
c ' n+1 

s,* 
Yn+1 = c,,, 3 

in which X ahd p are constants, such that 0 < h < 1 and JL = (1 - A2)r12. The 
variables r, and pn have the values one or minus one, chosen independently and by 
random choice at each time stage. 

It is easily verified that, if So2 + C,,” = 1 and uo2 + yo2 = 1, then 

s*2 + c*z zzx 1 ?I ?z u,*” + y,*” = 1, 

sqc2= 1 0. n , QQ2+yn2= 1, 

F,,2 + Gn2 + H,,2 = A2. 

These relationships were used as checks of the program for generating the randomly 
varying functions F,, , G, and H, . Cyclic permutation of three different formulas 
for computing the functions F,, , G, , and H, insures that the forcing is statistically 
isotropic, since there are then an equal number of random choices involved in 
computing each random variable during every cycle of 3 time steps. The relations 
between the variables S, , C,, , u,, , yn , and &*, C,“, un*, yla* guarantee con- 
tinuity of the F, , G, , and H, , despite the fact that the latter are computed from 
formulas that change from one time stage to the next. 

3. THE COMPUTATIONS AND OUTPUT 

Starting with initial conditions X0 = Y, = Z,, = 0, Eqs. (5) were integrated 
numerically for T = r2.4t = .04. This value was small enough to suppress trun- 
cation error to within a few percent. The calculations were carried out for h = A 
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and A = 10.0. As a result, the random functions changed sign about once every 
ten time steps. 

The output was presented in several forms, the simplest and most relevant of 
which are fixed-interval time averages and cumulative time averages of Xn2, Yn2, 
and Zn2. Some types of output were diagnostic checks of the program, and another 
is a count of the number of time stages at which the coordinates (X, , Y, , 2,) lie 
intherangeid<X,~((i+l)d,jd<Y,~(j+l)d,andkd<Z,~((k+l)d, 
for an arbitrarily chosen constant d and selected limits of the indices i, j, and k. 
The latter gives the numerically calculated probability density function. 

A listing of the Fortran IV program is available on request. 

4. NUMERICAL RESULTS AND INTERPRETATION 

The main results are summarized in Figs. l(a)-(c). Comparing Figs. l(a) and 
l(b), we first note that the variability of mean square values of X, , Y, and Z, is 
much less for 1000 time-step averaging intervals than for 100 time-step intervals. 
Moreover, Fig. l(c) shows that the cumulative average has become essentially 
stationary after about 5000 time steps. Thus, since the forcing is random with 
short period and the longest natural time scale is of the order of 100 time steps, we 
conclude that ensemble statistics, taken over about 50 or more independent 
realizations, are also quasistationary. This is convincing evidence that ensemble 
statistics taken over a sufficiently large number of realizations do indeed approach 
equilibrium, even if the number of degrees of freedom is small. 

To show that the result of this experiment was not entirely accidental, we merely 
point out that the expected equilibrium ratios of the mean square values of X, , Y, , 
and Z, are given analytically by Eq. (3). With corrections for systematic truncation 
error in the rate of viscous dissipation, the expected ratios are 2.15:1.00:.61. The 
numerically computed averages give the ratios 2.18:1.00:,55. In short, our conjec- 
tures about the existence and uniqueness of equilibrium ensemble statistics of 
systems governed by Eqs. (1) appear to be confirmed by numerical computation. 

Some interesting, but less conclusive results are shown in Figs. 2(a)-(d), which 
show a contour (solid lines) of the numerically computed probability density 
function in the three coordinate planes. For comparison, the elliptical intersections 
of the coordinate planes with surfaces of constant K are drawn as dashed lines. The 
“ridge” between lower interior and lower exterior values of the computed prob- 
ability density function is shown by a dash-dotted line. 

Inspecting Figs. 2(b)-(d), we first observe that the computed probability distri- 
bution is essentially constant on the surfaces Xmz + 2YmB + 3Z,,2 = constant, as 
predicted by the analytical results. Although the functional dependence on K does 
not correspond exactly with that given by Eq. (2), we should emphasize that the 
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FIG. 1. Graphs of time-averaged values of X,,a (solid lines), Yma (dashed lines) and Zna (dash- 
dotted lines), in relative units. 

(a) Averages over successive 100 time steps. 
(b) Averages over successive 1000 time steps. 
(c) Cumulative average as a function of averaging interval. 



RG. 2. Contours of the computed probability density function (solid lines) and “ridge-lines” 
(dash-dotted). The dashed curves are elliptical intersections of the coordinate planes with surfaces 
of constant K. 

(a) X-Y plane at 20 000 time steps. 
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FIG. 2. (b) X-Y plane at 30 000 time steps. 
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I 
FIG. 2. (c) X-Z plane at 30 000 time steps. 
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FIG. 2. (d) Y-Z plane at 30 OCJI time steps. 

distributions shown in Fig. 2 cannot be in statistical equilibrium for a large en- 
semble of independent realizations but, in that sense, must tend toward the normal 
distribution. This follows from the continuity (or Liouville) equation for a true 
ensemble of points in phase space, which implies that 
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where the integrations are taken over a volume V bounded by a closed surface S 
on which K is constant. The derivatives with respect to n are directed normal to S 
and outward. Thus, since p > 0, the ensemble probability density must increase 
with time inside any closed shell of maximum p. This is, in fact, verified by com- 
paring Figs. 2(a) and (b); the probability density increases near the origin, and the 
shell of maximum p shrinks, but very slowly. 

One should expect, therefore, that the probability density would gradually peak 
at the origin, approaching the e-vklU distribution after a very long time integration. 
Since machine time was short and convergence was obviously slow, the authors 
decided to start afresh later, but with A = 1, in which case the external Reynolds 
number would be an order of magnitude smaller and the convergence rate would 
have to be correspondingly increased. 

Despite incomplete convergence, the probability distribution is evidently close 
enough to equilibrium to give stable statistics for quantities that are sampled several 
thousand times more often. As pointed out earlier, the computed averages of 
Xn2, Yn2 and Zn2 become quasi-stationary and are very close to their theoretically 
derived equilibrium values. 
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